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We formulate a coarse-grained mean-field approach to study the dynamics of the flexible ring polymer in
any given obstacle �gel or melt� environment. The similarity of the static structure of the ring polymer with that
of the ideal randomly branched polymer is exploited in formulating the dynamical model using aspects of the
pom-pom model for branched polymers. The topological constraints are handled via the tube model frame-
work. Based on our formulation we obtain expressions for diffusion coefficient D, relaxation times �, and
dynamic structure factor g�k , t�. Further, based on the framework we develop a molecular theory of linear
viscoelasticity for ring polymers in a given obstacle environment and derive the expression for the relaxation
modulus G�t�. The predictions of the theoretical model are in agreement with previously proposed scaling
arguments and in qualitative agreement with the available experimental results for the melt of rings.
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I. INTRODUCTION

DNA often naturally occurs in the ring form �plasmid
DNA� and is characterized by the technique of gel electro-
phoresis �1�. Although the technique has been widely used,
the dynamics of plasmid DNA through a gel environment is
not well understood. This is because of complications
that arise in the study of electrophoretic mobility of a plas-
mid DNA molecule due to its semiflexible and polyelectro-
lytic nature. A flexible ring polymer in any given environ-
ment is a convenient model system to start with for
understanding the mobility of molecules like DNA �2�. The
development of a framework for studying the dynamics of
flexible ring polymers is thus of considerable importance.

The rheological response of a polymeric system is gov-
erned to a considerable extent by the macromolecular topol-
ogy. We expect that this is a consequence of the influence of
topological aspects on static and dynamic behavior at a mo-
lecular level. Topological constraints that arise in a poly-
meric system can be considered to be of two types, viz.,
internal and external, the former corresponding to the mac-
romolecular architecture and the latter to the confinement of
the polymer effected due to the presence of obstacles in its
environment. The study of rheological response on the basis
of molecular theory requires the formulation of frameworks
that can capture the influence of both internal and external
topological constraints.

The tube model framework has been the most successful
phenomenological framework for handling external topologi-
cal constraints �3�. In the case of linear polymer chains, an
uncomplicated static structure not influenced by the presence

of obstacles in the environment makes it easier to fit it
into the tube model framework. The associated reptation dy-
namics studies have enabled a better understanding of the
viscoelastic response of the linear polymeric systems on a
molecular theory basis �4�.

In the case of other structures such as star, branch, and
rings, there are two complications that arise. First, the static
structures are sufficiently complex and in the case of rings
the static structure is influenced by the presence of obstacles
�5�. Second, for studying dynamics one has to come up with
some ingenious conceptualization, like that of the pom-pom
model �6� for branched polymers, to fit it into a tube model
framework. In the case of rings, the absence of free ends,
which play an important role in the reptation relaxation
mechanism for linear chains, leads to concerns regarding the
application of reptation dynamics for ring polymeric systems
�7�. In this paper we develop a framework, called the pom-
pom ring �PPR� framework, inspired by the pom-pom model,
for studying the dynamics of ring polymers in a fixed
obstacle �FO� environment. Further, we use this framework
to understand the linear viscoelastic response of the ring
polymers in any given obstacle �gel or melt� environment.

We restrict our attention to unknotted ring polymers in the
presence of obstacles around them. The obstacle environ-
ment can be either a fixed obstacle �gel� or a moving obstacle
�melt�. Viscoelastic measurements have been done for the
melt of rings by two groups �7–9�. The main difficulty in
these experiments was the presence of linear contaminants
and the probable presence of knotted structures of rings and
their influence on the viscoelastic response. Detailed experi-
ments by Roovers et al. �7� on ring-linear polymer blends
indicate the strong influence of the presence of linear chains
on the viscoelastic response of the system. There are oppos-
ing viewpoints regarding the influence of the presence of
knots on the statics and dynamics. McKenna et al. �8� argue
that the presence of knotted rings can affect the viscoelastic
response, while Roovers et al. �7� consider that there is no
need to invoke the influence of knots in order to explain the
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viscoelastic response of the ring melt. We do not invoke the
knotted picture and its influence on statics and dynamics in
the framework directly in this paper. Although the knot pic-
ture is not directly invoked in the formulation of the frame-
work, it is flexible enough to accommodate changes in static
structure and the associated change in dynamics.

In Sec. II we develop, based on physical arguments, a
framework for studying the dynamics of ring polymers in a
FO environment. We propose a coarse-grained model for a
modified primitive chain and describe the salient features
related to its dynamics. In Sec. III, we utilize the framework
developed in Sec. II and a coarse-grained modified Rouse
model to derive expressions for the self-diffusion coefficient,
relaxation time, and dynamic structure factor. In Sec. IV we
deal with the linear viscoelastic response of the system com-
posed of rings in a FO environment and derive the expres-
sion for the relaxation modulus in the linear viscoelastic re-
gime. In Sec. V we extend the results of Sec. IV to that of the
melt of rings and compare our theoretical predictions with
the experimental results of Roovers �7�.

II. POM-POM RING FRAMEWORK

An ideal flexible ring polymer, with Kuhn length b, takes
a collapsed conformation in a FO environment with an ob-
stacle of linear dimensions a, when b� �a� �Rg �5�. The
conformation of the ring is obtained using a Cayley tree
mapping of the obstacle environment followed by forcing a
closed random walk on the Cayley tree lattice �Fig. 1�. The
characteristic length scale for a closed random walk of N
steps on a Cayley tree lattice is of order N1/2. The resulting
conformation is known as a lattice animal or lattice tree
structure and resembles that of a randomly branched polymer
�5�. The mean-square radius of gyration, Rg, of a ring poly-
mer without excluded volume interactions is given by �10�

�Rg
2� =

z

z − 2

�2�

8
a2�N , �1�

where z is the coordination number of the Cayley tree lattice
and a is the step size of the lattice. In the case of an excluded
volume branched polymer chain it has been shown that the
size of the branched polymer is given by Rg�N1/2, where N
is the number of Kuhn segments �11�. This result holds for
excluded volume rings �12�.

Scaling arguments for the dynamics of rings in a FO en-
vironment �gel� have been worked out for both ideal �13� and

excluded volume �12� rings. These arguments are based on
the kink-diffusion picture proposed by de Gennes �14�
wherein a linear polymer diffuses due to the motion of
“length defects” or kinks along its contour. The number of
kinks in a linear chain is proportional to the contour length of
the polymer chain. The diffusion of each kink has a specific
contribution towards the center-of-mass motion of the chain.

The approaches for scaling arguments in the case of rings
differ in terms of the contribution of each kink towards the
center-of-mass motion. Obukhov et al. �13� argue that the
kink-diffusion mechanism for rings is different from that of
linear chains as opposed to Cates and Deutsch �12�. The
latter authors propose a linearlike kink-diffusion mechanism
in which the diffusion of all kinks along the contour of the
chain contribute to the center-of-mass motion, whereas the
former authors propose a distinct mechanism for rings in
which not all kinks along the contour contribute to the
center-of-mass motion. There arise differences in the scaling
results due to variations in static configuration as well as due
to the distinct mechanism of kink diffusion. For an ideal ring
polymer in the FO environment the former’s scaling argu-
ment yields the diffusion coefficient D�N−2 and the longest
relaxation time �d�N5/2 while the latter’s scaling argument
yields D�N−5/2 and �d�N3.

We do intuitively expect that the absence of free ends
could cause a local accumulation of kinks and hence is likely
to alter the kink-diffusion mechanism on a global level. As a
consequence we discuss the Obukhov et al. �13� mechanism
in detail and follow up our framework formulation based on
it. The mechanism of kink diffusion proposed by Obukhov et
al. �13� hinges on the lattice-tree structure of the ring poly-
mer. The lattice-tree structure is a self-similar structure com-
posed of substructures, viz., trunk, branches, and leaves with
the relaxation of different substructures happening at differ-
ent time scales. In particular, the diffusion of kinks among
branches and leaves is fast and causes only local rearrange-
ments without any center-of-mass motion. The diffusion of
kinks along the trunk is slower and causes the center-of-mass
motion of the polymer chain. The number of kinks contrib-
uting to the center-of-mass motion is thus proportional to the
contour length of the trunk instead of the entire ring chain.
The dynamics of the trunk, the most predominant length
scale, governs the longest relaxation times of the system
�Fig. 2�.

We use the above physical arguments as a basis for divid-
ing the polymer ring into substructures with the dynamics of
different substructures coupled in a specific way. In doing
this we consider that for a ring of N segments in the FO
environment there exists a characteristic length scale, of the
order of N1/2 segments as per Eq. �1�, which constitutes the
primary trunk of the lattice-tree structure. The primary trunk
of the ring lattice tree can be unambiguously determined �13�
and is the most endurable hypothetical structure among the
substructures of the ring lattice tree. Further, the leaves and
branches of the lattice tree constitute loops that are attached
to the primary trunk at loop points, similar to the branches
attached to branch points in a branched polymer. The number
of loops is proportional to the length of the primary trunk,
�N1/2. On an average a loop would be composed of
N1/2 segments, which sit on the hypothetical primary trunk

FIG. 1. Cayley tree mapping for a ring polymer.

IYER, LELE, AND JUVEKAR PHYSICAL REVIEW E 74, 021805 �2006�

021805-2



�Fig. 3�. Given the similarity of the lattice-tree structure to
the randomly branched polymer we may now invoke
the pom-pom model to describe the dynamics of the ring
polymer.

According to the pom-pom model for branched polymers,
the branches, if entangled, relax through an arm retraction
mechanism, which is the only mechanism allowed by a con-
stricting branch point, and the relaxation times are exponen-
tially dependent on the arm molecular weight �6,15�. Shorter
branches, not so entangled, may relax through Rouse modes
�16�. The relaxation of the entangled backbone of the
branched polymer is constrained by the presence of branch
points and can happen only after the relaxation of the branch
arms. Thus, the branches add substantially to the friction of
the backbone and in the case of the pom-pom model the
friction is essentially located at the ends of the backbone
�6,16�.

In the case of the ring polymer we can consider that the
primary trunk of the self-similar lattice animal or lattice tree
is entangled with the FO environment, while the loops take a
much more collapsed conformation and are hence not en-

tangled and their dynamics is entirely Rouse-type. A subtle
difference between a branch point and a loop point is that the
segments in the loop can slide into neighboring loops
through the trunk, a motion that is not available in branch
polymers. However, such sliding of segments between loops
is expected to be a rapid process compared to the center-of-
mass motion for the trunk and the entire loop has to relax
before the trunk segment to which it is attached can diffuse.
Thus, the dynamics of the trunk may be affected in a way
similar to that of the backbone of the branched polymer. At
any point of time for a trunk segment to move, it requires
that the loop attached to the specific trunk segment relax
completely and allows for the loop point to move. The loops
act as frictional constraints for the motion of the trunk.

On the basis of the physical picture described above, we
formulate the PPR framework for studying the dynamics of
ring polymers. First, we formulate a modified primitive chain
for the ring polymer as follows:

�1� It is constituted by the primary trunk of the
lattice animal with a constant contour length given by
Ltrunk=N1/2b2 /a.

�2� Each segment of the trunk has attached to it a loop. On
an average each loop contains N1/2 segments. We assume that
the loops are unentangled because of collapsed conformation
as compared to the primary trunk.

�3� The primitive chain is entangled and can move along
itself with a curvilinear diffusion coefficient determined from
the dynamics of a modified Rouse chain.

�4� The primitive chain has the conformation of a random
walk, i.e., the tangents at different points along the trunk are
uncorrelated

Second, using the pom-pom model analogy, the diffusion
coefficient of a loop point Dl is given by Dl= �1/2�
��a2 /�R loop�, where �R loop�N is the Rouse relaxation time
of the loop attached to the loop point. Using the Einstein
argument, the drag on a loop point is given by �l=kBT /Dl.
From this we obtain that the friction experienced by the loop
point scales as N�, where � is the friction coefficient of a
single Rouse bead in the loop. Thus, the modified Rouse
chain, which constitutes the primitive chain, has each of its
beads having a friction coefficient of N�.

In the above argument we have reduced the structure of
the ring polymer to its primary hierarchical level consisting
of a primary trunk of N1/2 segments having N1/2 number of
loops attached to it, each consisting of, on an average, N1/2

beads. In other words, we have not explicitly invoked the
self-similar structure of the lattice tree. In fact we show in
Appendix E that such an explicit accounting of the lattice-
tree structure, while invoking the Einstein argument and the
modified Rouse dynamics consistently at each hierarchical
level, indeed gives a friction coefficient of a primary trunk
segment scaling as N�. The current framework is thus self-
consistent. However, in the rest of the work described below
we will concern ourselves with only the primary hierarchical
level since our main interest is in describing the evolution of
the longest length scale and consequently, the slowest
dynamics.

The primitive chain and the modified Rouse chain of the
PPR framework can be appropriately modeled with a change
in static structure. In the case of rings in a melt environment

FIG. 2. Trunk, branch, and leaf structures.

FIG. 3. Model chain for studying dynamics.
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since Rg�N�, where � can lie between 1/4 and 1/2
�12,17,18�, the characteristic length scale, i.e., the length of
the trunk, is expected to be of the order N2�. We have loops,
each containing N1−2� segments, attached to these N2� trunk
segments, acting as frictional constraints to the motion of the
trunk. A detailed analysis of the dynamics in the melts based
on this physical picture is presented in Sec. V.

In the case of the excluded volume ring since Rg�N1/2

�12�, the length of the trunk is expected to be of order N. The
excluded volume ring formulation can be thought of as con-
sisting of N loops, each containing one segment. For this
structure we would expect dynamic scalings similar to that of
linear chains because the structure is like that of a double-
folded ring and the dynamics is expected to be like that of
the reptation of a double-folded sausage �15�. Simulations by
Cates and Deutsch �12� confirm that the scaling coefficient
for swollen rings is similar to that of linear chains.

III. DIFFUSION COEFFICIENT, RELAXATION TIMES,
AND DYNAMIC STRUCTURE FACTOR

A. Curvilinear diffusion coefficient

Using the PPR framework one can determine the self-
diffusion coefficient, longest relaxation time, and the dy-
namic structure factor of the ring chain, considering that the
dynamics of the trunk of the ring confined in the tube of
obstacles governs these aspects. To determine the curvilinear
diffusion coefficient of the primitive chain we begin with the
dynamics of the modified Rouse chain constituting the primi-
tive chain. We start with the Langevin equation for the nth
bead of the chain experiencing an effective friction of
�ef f =N�,

�ef f
�Rn

�t
= kef f

�2Rn

�n2 + fn, �2�

where Rn is the coordinate of the nth bead and fn is the
stochastic force on the nth bead. Since the loops are consid-
ered to contribute only to the friction of the trunk, the poten-
tial between beads is not affected by the presence of loops
and hence the effective spring constant is given by kef f
=3kBT /b2, however, the effective friction coefficient is given
by �ef f =N� as argued in the previous section.

From the fluctuation-dissipation theorem we have the
moments of the stochastic force �fn� experienced by the
modified Rouse bead given by

�fn�t�� = 0 ,

��fn��t�fn��t���� = 2�ef fkBT	�n − m�	��	�t − t�� . �3�

We decouple the set of Eq. �2�, n=1,2 , . . . ,N1/2, using the
normal coordinate system �see Appendix A, Eqs. �A1�–�A6��
and use Eqs. �3� to determine the different Rouse modes and
the relaxation spectrum.

The diffusion coefficient of the center of mass is defined
by

Dc = lim
t→


1

6t
��RG�t� − RG�0��2� . �4�

The zeroth normal mode X0 corresponds to the position of
the center of mass of the chain and is given by Eq. �5�. The
mobility of the center of mass is determined from the corre-
sponding normal mode equation. The diffusion coefficient is
given by Eq. �6�;

RG =
1

N1/2	
0

N1/2

dnRn = X0, �5�

Dc = lim
t→


1

6t
�

��X0��t� − X0��0��2� . �6�

From the normal-mode equations we obtain for ideal rings
in the FO environment �using �=1/4 in Eq. �A5��

��X0��t� − X0��0��2� = 2
kBT

N1/2�ef f
	��t . �7�

Substituting Eq. �7� in Eq. �6� we obtain

Dc =
kBT

N1/2�ef f
. �8�

Using �ef f =N� we have

Dc =
kBT

N3/2�
. �9�

The scaling arguments of Obukhov et al. �13� have N1/2

kinks diffusing over a linear dimension a to give the center-
of-mass curvilinear diffusion coefficient scaling as
N1/2�a /N�2�N−3/2, a scaling satisfied by Eq. �9�.

B. Self-diffusion coefficient and relaxation times

The higher-order Rouse modes can be determined from
the decoupled normal-mode equations �see the Appendix B,
Eq. �B1��, p=1,2 , . . . ,
. The modified Rouse relaxation
spectrum for the chain is given by

�p =
1

3

1

p2

b2

�2

�

kBT
N2. �10�

We now consider the case where the primitive chain of
length Ltrunk=N1/2b2 /a is confined in a tube formed by the
FO environment and relaxes by reptation dynamics similar to
that of a linear chain. The reptation of the trunk is governed
by the reptation equation given by

�

�t
��s,s�;t� = Dc

�2

�s2��s,s�;t� , �11�

where we have ��s ,s� ; t�= ��R�s , t�−R�s� ,0��2� and R�s , t�
is the position vector of a bead at a curvilinear distance s at
time t. The associated initial and boundary conditions for this
equation are given by

��s,s�;0� = a�s − s�� , �12�
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� �

�s
��s,s�;t��

s=Ltrunk

= a , �13�

� �

�s
��s,s�;t��

s=0
= − a . �14�

The diffusion coefficient calculated from the modified
Rouse chain becomes the curvilinear diffusion coefficient of
the primitive chain in the tube formulation. We use the cur-
vilinear diffusion coefficient of the primitive chain given by
Eq. �9� to determine the self-diffusion coefficient and the
longest relaxation time of the ring polymer for ideal rings in
the FO environment as �see Appendix C use �=1/4�

D =
1

3

kBT

N2�

a2

b2 , �15�

�d =
1

�2

b4

a2

�

kBT
N5/2. �16�

The exponents determining the dependence on the molecular
weight �N� in the theoretical predictions of Eqs. �15� and
�16� agree with the scaling exponents of Obukhov et al. �13�
for the self-diffusion coefficient and the longest relaxation
time.

C. Dynamic structure factor

The dynamic structure factor g�k , t� corresponding to the
primitive chain can also be determined from the reptation
picture in a fashion similar to that of the linear chain. In this
case one has to consider that the evolution of the structure
factor corresponds to the evolution of the hypothetical trunk
of the ring polymer,

g�k,t� =
N1/2

Ltrunk
2 	

0

Ltrunk

ds	
0

Ltrunk

ds��exp
ik · �R�s,t�

− R�s�,0���� . �17�

Based on the reptation formulation we obtain g�k , t� as

g�k,t� = 

p=1



2�N1/2

�p
2��2 + �p

2 + ��
sin2 �p � exp�− 4

Dct�p
2

Ltrunk
2 � ,

�18�

where

� =
k2

12
Ltrunka . �19�

�p are the positive solutions of the equation

�p tan �p = � . �20�

There are two limits at which the dynamic structure factor
can be obtained. For �� �1 we focus on a length scale
larger than the size of the polymer chain and g�k , t� is given
by

g�k,t� = N1/2 exp�− Dk2t� . �21�

For �
 
1 we focus on a smaller length scale than the size
of the polymer chain and g�k , t� is given by

g�k,t� =
12

k2b2��t� , �22�

where ��t� is the fraction of chain in the original tube at
time t. Since we are concerned in this work with only the
motion of the longest length scale, i.e., the entangled primary
trunk, Eq. �22� above is applicable for wave vectors in the
range N−1/4� �k� �N−1/8.

IV. RELAXATION MODULUS

Typically in experiments we explore two regimes of sys-
tem behavior, viz., the high-frequency regime to explore the
response of parts of the chain and the low-frequency regime
to explore the entire chain response to an applied deforma-
tion gradient. Below the obstacle linear dimension a, the
trunk chain does not see the constraints and sections of the
chain relax by three-dimensional �3D� Rouse modes. The
time scale of relaxation associated with this length scale a is
the same as the time taken for a monomer to have an average
mean-square displacement of a2. In our system we use the
modified Rouse formulation to calculate monomer displace-
ment along the trunk since we know that beads along the
trunk experience a friction N�. Based on this formulation we
have the time taken for such a displacement of monomer
along the trunk given by �see the Appendix D Eq. �6�; use
�=1/4�

�e =
a4

b2

�

12

N�

kBT
. �23�

For times t
�e the chain starts encountering obstacles. The
dynamics is no longer modified Rouse dynamics beyond this
time scale.

The relaxation modulus has to be obtained in two steps
because of the distinct dynamics scenario at different length
scales. For time scale t��e the relaxation modulus is ob-
tained from the modified Rouse dynamics picture and for
t
�e the reptation picture is invoked. For obtaining the re-
laxation modulus we first start with the microscopic expres-
sion for the stress tensor given by

��� =
ct

N1/2kef f	
0

N1/2

dn� �Rn�

�n

�Rn�

�n
� . �24�

Since all the stress in the system is stored by the orientation
of the trunk segments rather than the entire polymer, we
use the concentration of segments along trunk ct of the chain
rather than the concentration of segments on the entire
polymer c in the stress-tensor expression.

For the case t��e, we may use normal coordinates to
simplify Eq. �24� and obtain
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��� = 2
ct

N
kef f�

2

p=1




p2�Xp�Xp�� . �25�

We now impose a homogeneous deformation gradient
�̄�r , t�=�� �t� ·r on the FO environment. During such a
deformation the Langevin equation for the pth normal
coordinate Xp becomes

�Xp

�t
= −

kp

�p
Xp +

1

�p
fp + �� �t� · Xp. �26�

From the Langevin equation �26� we obtain the equation for
the correlation �Xp�Xp�� as

��Xp�Xp��
�t

= − 2
kp

�p
�Xp�Xp�� +

1

N3/2�
kBT	�� + ����Xp�Xp��

+ ����Xp�Xp�� . �27�

Equation �27� can be solved to obtain �Xp�Xp�� for any
given homogeneous deformation gradient. For homogeneous
shear where �� �t� is given by

�0 ��t� 0

0 0 0

0 0 0
� ,

we have the equation for the xy component of the correlation
given by

��XpxXpy�
�t

= − 2
kp

�p
�XpxXpy� + ��t��Xpy

2 � . �28�

Considering the system to be close to equilibrium we
have �Xpy

2 �=kBT /kp, which using the solution to Eq. �28� is
obtained as

�XpxXpy� =
kBT

kp
	

−


t

dt1 exp�− 2�t − t1�
�p

���t1� . �29�

Substituting Eq. �29� in Eq. �25� we obtain

�xy = 2
ct

N
kef f�

2

p=1




p2kBT

kp
� 	

−


t

dt1 exp�− 2�t − t1�
�p

���t1� .

�30�

The phenomenological expression for the stress tensor in
terms of the relaxation modulus is given by

�xy�t� = 	
−


t

dt1G�t − t1���t1� . �31�

Comparing Eq. �30� with Eq. �31� we obtain

G�t� =
ct

N1/2kBT

p=1




exp�− 2
t

�p
� . �32�

For the case t
�e the reptation framework is invoked
wherein the stress memory in the system at any time corre-
sponds to the fraction of the chain in the original tube at that

time. From the reptation equation the fraction of chain in a
given tube, ��t�, and the associated relaxation modulus, G�t�
are given by

��t� =
8

�2 

p=1,odd



1

p2 exp�− tp2

�d
� , �33�

G�t� = G0��t� . �34�

At time t=�e we have from the modified Rouse dynamics
G��e�= �ct /�2��kBT�b2 /a2� and from the reptation dynamics
G��e�=G0���e�. For large N we can see from Eqs. �16� and
�23� that the time scale �e� ��d, which makes it reasonable
to assume that ���e�=1. By the comparison of G��e� from
Rouse dynamics and reptation we determine the value of the
constant G0 as given in Eq. �35�. Then the expression for the
relaxation modulus for time t��e is given by Eq. �36�.

G0 =
ct

�2�
kBT

b2

a2 , �35�

G�t� =
4�2

�3 ctkBT
b2

a2 

p=1,odd



1

p2 exp�− tp2

�d
� . �36�

V. MELT OF RINGS

The analysis for the FO environment can be extended to
the melt of rings by retaining one assumption and incorpo-
rating two modifications. The assumption we make is that the
static structure of a ring in its melt can be described as con-
sisting of a longest characteristic length scale �the primitive
chain� having fast relaxing friction-contributing loops at-
tached to it. Of the two modifications, the first modification
corresponds to the static structure; based on scaling argu-
ments and computer simulations �12,17,18� the size of the
ring chain in melt Rg is determined to be of the order �N�,
where � can lie between the extremes of 1 /4 and 1/2. Thus
the primitive chain would scale as N2�. The collapsed struc-
ture of rings in the melt environment causes the entangle-
ment molecular weight or the entanglement spacing of the
ring polymeric system to be different from that of linear
chains. The entanglement molecular weight is an experimen-
tally obtained parameter in the tube model. It is obtained
from the plateau modulus, GN

0 data, and for linear polymers
can be calculated using the expression of form �19�

Me =
1

�2�

�NAkBT

GN
0 . �37�

From the entanglement molecular weight the average num-
ber of Kuhn segments present between entanglements Ne can
be calculated.

Since the ring polymer takes a more collapsed conforma-
tion than the linear in a melt environment, two possible sce-
narios for estimating Ne can be considered. In the first sce-
nario we may expect that the number of segments between
entanglements for a given entanglement spacing a is more
for rings. We propose the following way to obtain the
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number of segments between entanglements for rings Ne
r. In

the case of linear chains we have a2 /b2=Ne
l based on the

random-walk structure and in the case of rings we have
a2 /b2= �Ne

r�2� based on the self-similar structure of the lattice
animal. Equating the right-hand side of the expressions for
a2 /b2 we have Ne

r = �Ne
l �2�. It can be seen from this expres-

sion for Ne
r that the collapsed conformation of rings causes

the number of segments between a given entanglement
spacing to be greater than that for linear chains.

The second scenario could be that we hold the molecular
weight between entanglements for rings to be the same as for
linear chains, whereas the entanglement spacing a changes
due to the difference in the static conformation of the rings.
Due to the collapsed conformation of the rings, the entangle-
ment spacing is expected to be smaller for rings as compared
to linear chains. Based on this picture we have the entangle-
ment spacing for rings given by ar= �Ne��b, which is smaller
than the entanglement spacing for linear chains al=Ne

1/2b.
Several simulations on the melt of rings �17,23,24� seem

to indicate that while high molecular-weight linear polymers
can feel the effects of entanglements in their melt state, rings
of the same molecular weight �and identical chemical struc-
ture� are not effectively entangled. Experimental evidence
indicates that the rings are less effectively entangled as com-
pared to linear chains. Roovers �9�, using dynamic oscilla-
tory data, and McKenna et al. �20�, using creep data, showed
that the plateau modulus of ring melts was approximately
half that for the linears of similar molecular weight. Later
Roovers �7� also claimed that the �much diffused� plateau
modulus for a highly pure polybutadiene ring polymer melt
was as low as one-fifth that of the linears of similar molecu-
lar weight. Thus rings do seem to entangle in a melt state,
however, they do so only at much higher molecular weights
compared to their linear counterparts. Further support comes
from recent simulations of Muller et al. �18� who show that
for semiflexible rings and high molecular-weight flexible
rings a significant fraction of the total monomer density is
contributed by the neighbors of a given ring molecule, which
indicates that such ring molecules could be well entangled.

In scenario one discussed above we have already shown
that the number of segments between entanglements and
hence the entanglement molecular weight is larger for rings
based on the static structure. As a result the number of en-
tanglements for a given molecular weight would indeed be
less for rings as compared to linear chains. However, there is
one more reason for why the plateau modulus of the melt of
rings could be lower than that for a linear chain melt. In rings
the orientation of the trunk governs the long-term dynamics
and hence the effective entanglement of the trunk is the point
of concern. The density � in Eq. �37� for the ring chain no
longer corresponds to the bulk density of the polymer but
rather to the density of trunks in the system. This density is
lower as compared to that of the bulk density due to the
presence of a large number of loops in the system. The dilu-
tion effect is also partly responsible for the reduction of the
plateau modulus.

If we consider ct the concentration of the number of seg-
ments lying along the trunk of the ring, then the number of
trunks per unit volume in the melt is ct /N2� since the trunk

contains N2� segments. The number of rings per unit volume
is given by the concentration of the number of segments per
unit volume divided by the number of segments per ring,
c /N. Considering that the number of trunks should be the
same as the number of rings, we equate the number of trunks
and the number of ring chains,

ct

N2� =
c

N
, ct =

c

N1−2� . �38�

Substituting for ct in Eq. �36� we obtain

G�t� =
4�2

�3

c

N1−2�kBT
b2

a2 

p=1,odd



1

p2 exp�− tp2

�d
� . �39�

It is clear from the above expression that the density is di-
luted by a factor of 1 /N1−2� when we consider only the den-
sity of segments along the trunk of the ring chain. Thus we
expect the plateau modulus of the ring melt to be smaller
than the plateau modulus of the linear melt by a factor of
1 /N1−2�.

Further, zero shear viscosity �ZSV� measurements on po-
lybutadiene rings of MW 6.0�104 g/mol indicate that the
ZSV of ring melt is approximately ten times lower than that
of the corresponding linear melt �7�. This can be understood
in terms of the ZSV scaling comparisons of linear chains and
rings. The ratio of the ZSV of the ring to that of the linear
chain is given by

�0r

�0l
=

GNr
0

GNl
0

�dr

�dl
. �40�

For the melt of rings we have �dr�N2�1+�� �see Eq. �C1��,
while for linear chains we have �dl�N3. Thus for large N,
given ��1/2, we have �dr��dl. From Eq. �40� we calculate
the ZSV ratio between the melt of the ring and the melt of
linear scales as N−2�1−2��.

The ring-to-linear ratio of the plateau modulus, relaxation
time, and ZSV can be calculated based on both the pictures
of changed entanglement molecular weight Ne

r = �Ne
l �1/2� and

changed entanglement spacing ar=Ne
−�1−2��/2al for rings.

Based on the former picture we obtain

GNr
0

GNl
0 =

ct

c
=

1

N1−2� , �41�

�dr

�dl
=

1

N1−2� , �42�

�0r

�0l
=

1

N2�1−2�� . �43�

Based on the latter picture we obtain

GNr
0

GNl
0 =

ct

c
Ne

1−2� = �Ne

N
�1−2�

, �44�

�dr

�dl
= �Ne

N
�1−2�

, �45�
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�0r

�0l
= �Ne

N
�2�1−2��

. �46�

We compare the results based on the above pictures with the
experimental results of Roovers �7��see Table III� for the
lower limits �=1/4, �=3/10, and the conjecture value
�=2/5 proposed by Cates and Deutsch �12�.

Further, we obtain the ratio �1 /�e, a measure of how fast a
crossover occurs from Rouse to reptation regime with N /Ne,
as follows:

�1

�e
=

4

�3

b4

a4N4� =
4

�3� N

Ne
r�4�

. �47�

It can be seen from the expression that �1 /�e scales weakly
as �N /Ne

r�4� for ��1/2 in comparison to a stronger scaling
of �N /Ne

l �2 for linear chains. Thus, the crossover to reptation
happens for relatively lower values of N in the case of linear
chains as compared to rings, a result that is in agreement
with the simulation of Müller et al. �17�.

We find that the theoretical predictions of the plateau
modulus, relaxation times, and ZSV by the PPR framework
vary sharply with exponent � �Table III�. Since there is some
uncertainty regarding the exact value of � for a melt of rings,
we have attempted to compare the PPR predictions of linear
viscoelastic variables with experimental data for various val-
ues of �. In particular, we have chosen the rheological data
of Roovers �7� on polybutadiene �PBD� polymers. We spe-
cifically looked at the data of two samples: a linear PBD
�sample KPBD34PC, MW=5.7�104 g/mol, �0=6.7
�105P� and a ring PBD �sample KPBD34B3, MW=6.0
�104 g/mol, �0=6.3�104P�. The ring sample was free of
linear contaminants that could potentially have substantially
altered the rheology of the ring melts �7�. The linear and the
ring PBDs have similar molecular weight and polydispersity,
however, the ZSV and the plateau modulus of the ring
sample were lower than those for the linear sample �7�.

In order to compare PPR theory predictions with experi-
mental data we need parameters concerning chain dimen-
sions and entanglement spacing for PBD. The molecular pa-
rameters a�45 Å, b�11 Å, Ne

l �15.5 were obtained from
Fetters et al. �21� for the PBD-62 sample �see also Table II of
Ref. �22��. This linear PBD contains 62% 1,2 microstructure,
which is similar to the 63% 1,2 microstructure in Roovers’
PBD sample. We obtained the concentration �c� of Kuhn seg-
ments per unit volume in the melt of linear chains by using
the value of the plateau modulus �GN

0 =0.81 MPa� tabulated
for PBD-62 in the expression GN

0 = �1/ ��2���ckBT�b2 /a2�. In
addition to parameters concerning chain dimension and
entanglement spacing, we need a friction coefficient of a
single Rouse bead ���. This was obtained by fitting the pre-
dictions of DE theory to the experimental data of Roovers’
linear sample KPBD34PC �see Fig. 4�. The same friction
coefficient was used for ring PBD.

We find that the predictions of the ZSV ratios are in close
agreement with the experimental data for �=3/10 for the
modified entanglement spacing scenario and �=2/5 for the
modified entanglement molecular-weight scenario. The ex-
perimental ring-linear ratios of the plateau modulus and the

longest relaxation times �taken as the inverse of the cross-
over frequency in the experimental data� do not compare
very well with the PPR model predictions. Figures 4 and 5
show the comparison between the experimental frequency
data and the PPR predictions for the two scenarios, modified
entanglement molecular weight ��=2/5� and modified en-
tanglement spacing ��=3/10�, respectively. The predictions
of the PPR model in the linear viscoelastic regime are en-
couragingly close to the experimental data for both cases.
Thus the PPR model by itself does not clarify as to which of
the two scenarios �and consequently what value of �� should
be adopted for understanding the dynamics of rings.

We expect the theory to overpredict the relaxation time
and viscosity since we have not considered contour length
fluctuation �CLF� for the trunk. CLF reduces the disengage-
ment time �longest relaxation time� for the trunk from its
tube of confinement and hence reduces the viscosity. In the
case of a ring in the melt the longest relaxation-time scaling,

without CLF, is given by �L̄trunk
2 /Dc, where L̄trunk=N2�b2 /a

is the average contour length. This yields �d�N2�1+��b4 /a2

for the ring without CLF. The relaxation time is reduced by
CLF corrections and is given by

�d
CLF �

�L̄trunk − �L̄trunk�2

Dc
,

FIG. 4. Comparison between Roovers experimental data for the
ring sample KPBD34B3 and PPR theory with exponent �=0.4 in
the modified entanglement molecular-weight scenario.

FIG. 5. Comparison between Roovers experimental data for the
ring sample KPBD34B3 and PPR theory with exponent �=0.3 in
the modified entanglement spacing scenario.
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�d
CLF � �N2�1+��b4

a2 −
2
�3

N�+2b3

a
+

N2b2

3 � �

kBT
, �48�

where �L̄trunk= �N2�b2 /3�1/2 is the average fluctuation.
In Eqs. �48� the first term corresponds to the scaling with-

out CLF corrections. The second and third terms correspond
to corrections effected by CLF. It can be seen that CLF-
induced corrections are significant for finite N and the higher
the value of N the less significant are the corrections. Further,
CLF-introduced corrections are expected to be considerable
in the case of a more collapsed ring when the trunk has
longer loops associated with it. For example, consider the
comparison between the cases of �=2/5 and �=1/4. We
have

�d
CLF � �N14/5b4

a2 −
2
�3

N12/5b3

a
+

N2b2

3 � �

kBT
,

�d
CLF � �N5/2b4

a2 −
2
�3

N9/4b3

a
+

N2b2

3 � �

kBT
. �49�

As the ring becomes more collapsed it can be seen that the
exponent of N in the second term �correction term�
approaches the exponent in the first term.

VI. CONCLUSION

In this paper we have developed the PPR framework for
studying the dynamics of flexible ring polymers in fixed and
moving obstacle environments. The PPR approach is in-
spired by the pom-pom model for branched polymers and is
based on the tube framework. In developing this framework
we have exploited the correspondence between the static
structure of an ideal ring polymer in the FO environment and
an ideal randomly branched polymer. The framework was
used to derive analytical expressions for the curvilinear dif-
fusion coefficient, self-diffusion coefficient, longest relax-
ation time, and dynamic structure factor. The derived expres-
sions are in good agreement with the scaling theories �see
Table I�.

The framework is general in the sense that as long as the
static structure of the ring can be described in terms of a
longest characteristic length scale, viz., the primary trunk,

and collapsed loops attached to it, appropriate modifications
can be incorporated into the framework in terms of the size
of the trunk and the loops. The longer the trunk, the larger
would be the number of loops associated with it, but the
smaller would be the size of the loops. In general, our inter-
est in this paper was restricted to studying the dynamics of
the longest length scale of the ring structure. The primary
trunk was modeled as a modified Rouse chain for which the
fast relaxing loops associated with it contribute only to
the friction of the trunk. The modified Rouse chain bead
friction can be modified to incorporate the extra friction con-
tributed by the loops based on the pom-pom picture using
Rouse dynamics for the relaxation of loops instead of arm
retraction.

The scaling relations of the dynamic quantities would ap-
propriately change with the change in the static structure
�Table II�. It may be of some interest to note that for an
unentangled ring in its melt, for which the scaling exponent
of the radius of gyration with molecular weight is close to
0.4, the diffusion coefficient derived from the modified
Rouse dynamics scales as D�N−1.2 �see Table II� and the
Rouse relaxation time scales as �N2. This appears to be in
agreement with recent simulation studies on unentangled
rings in melt �18,23�. Note that for a swollen ring chain for
which Rg�N1/2, we recover the linearlike scaling for the
various parameters in Table II.

Further, we have also explored the linear viscoelastic re-
sponse of high molecular-weight entangled rings and derived
the relaxation modulus in the linear regime. We have as-
sumed in the entire analysis that the relaxation of the loop is
essential for the mobility of the trunk of the ring. In this the
predominant length scale, viz., the trunk relaxes much more
slowly than the loops sitting on it. This is true even when the
number of segments composing the loops and trunk are the
same since the loop static structure is much more collapsed
than that of the trunk.

The extension of the results to melts is not straightforward
as it involves a couple of subtle issues that need to be ad-
dressed. The first of these issues is the modification of en-
tanglement molecular weight or the entanglement spacing for
the melt of rings. The second issue relates to accounting for
the dilution effects of the relaxed loop segments. A compari-
son of theoretically calculated ratios of the ring-to-linear pla-
teau modulus, relaxation times, and ZSV with experimental
results of Roovers �7� for the melt of pure polybutadiene

TABLE I. Comparison between the scaling results and the ex-
pressions derived using the PPR framework.

Quantity Scalinga PPR

Curvilinear diffusion coefficient �N−3/2
Dc=

kBT

�
N−3/2

Self-diffusion coefficient �N−2
D=

1

3

kBT

�

a2

b2N−2

Longest relaxation time �N5/2
�d=

1

�2

b4

a2

�

kBT
N5/2

aReference �13�.

TABLE II. General scaling results for a ring with its Rg�N�.

Quantity Scaling from PPR

Number of trunk segments N2�

Number of loop segments N1−2�

Rouse bead friction/�e N2�1−2��

Curvilinear diffusion coefficient N−2�1−��

Self-diffusion coefficient N−2

Longest relaxation time N2�1+��

Plateau modulus N2�−1

Viscosity N4�+1
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rings of MW 6.0�104 g/mol having a Me of 2750 g/mol
�7� is presented in Table III.

We have compared our predictions with only one experi-
mental rheological data set of Roovers �7� that is believed to
be obtained for a melt of pure rings having no linear con-
taminants that could otherwise dramatically affect the rheo-

logical behavior. The comparison indicates that depending on
the scenario adapted, modified entanglement molecular
weight or entanglement spacing, the PPR framework gives
reasonable predictions of the ZSV ratio and frequency sweep
experimental data but for different values of the static scaling
exponent �. The Cates and Deutsch conjecture of �=2/5
�12� and the results of early simulations by Müller et al. �17�
go well with the modified entanglement molecular-weight
scenario. In a more recent work of Müller et al. �18� it is
argued that the use of a general exponent � lying between
1/4 and 1/2 is more appropriate. Such a general exponent �
will go well with both the scenarios. It is thus not clear as to
which of the two scenarios is to be coupled with the PPR
framework for predicting the experimental results.
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APPENDIX A: NORMAL COORDINATES

Normal coordinates are defined by

Rn = X0 + 2

p=1




Xp cos� p�n

N2� � , �A1�

fn =
f0

N2� +
1

N2� 

p=1




fp cos� p�n

N2� � , �A2�

Xp =
1

N2�	
0

N2�

dn cos� p�n

N2� �Rn, �A3�

fp = 2	
0

N2�

dn cos� p�n

N2� �fn. �A4�

In the above equations � is defined as the scaling exponent in
Rg�N�. Thus, for an ideal ring in the FO environment �
=1/4 and for a melt of the rings � can lie between 1/4 and
1/2.

The transformation of Eq. �2� using normal coordinates
decouples the set of equations. By equating the coefficients
of cos�p�n /N2�� we obtain

�ef f
�X0

�t
=

f0

N2� , �A5�

2�ef f
�Xp

�t
= − 2kef f

p2�2

N4� Xp +
fp

N2� . �A6�

APPENDIX B: HIGHER ROUSE MODES

The decoupled equations for the higher normal modes are
given by

TABLE III. Comparison between the PPR framework results
and the experimental results for the PBD ring of MW 6.0
�104 g/mol and Me=2750 g/mol �N�341, N /Ne�22�.

Quantitya Experimentsb
PPR
Ne

r = �Ne
l �1/2�

PPR
ar=alNe

−�1−2��/2

Ratio of
plateau modulus

��=1/4� ��=1/4�

�GNr
0

GNl
0 � 0.15 0.054 0.21

Ratio of
relaxation times

��dr

�dl
� 0.63 0.054 0.21

Ratio of
ZSV

��0r

�0l
� 0.094 0.003 0.046

Ratio of
plateau modulus

��=3/10� ��=3/10�

�GNr
0

GNl
0 � 0.15 0.097 0.29

Ratio of
relaxation times

��dr

�dl
� 0.63 0.097 0.29

Ratio of
ZSV

��0r

�0l
� 0.094 0.009 0.084

Ratio of
plateau modulus

��=2/5� ��=2/5�

�GNr
0

GNl
0 � 0.15 0.31 0.54

Ratio of
relaxation times

��dr

�dl
� 0.63 0.31 0.54

Ratio of
ZSV

��0r

�0l
� 0.094 0.096 0.29

ar denotes ring and l denotes linear.
bThe linear chains MW is 5.7104 while the ring MW is 6.0104.
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�p
�Xp

�t
= − kpXp + fp, �B1�

where

�p = 2N2��ef f, kp = 2kef f
p2�2

N2� . �B2�

The solution to Eq. �B1� is given by

Xp�t� =
1

�p
	

−


t

dt1 exp�− �t − t1�
�p

�fp�t1� , �B3�

where �p=�p /kp.
Substituting for �p and kp from Eq. �B2� and using

�ef f =N2�1−2��� and kef f =3kBT /b2, we have

�p =
1

p2

1

3

b2

�2

�

kBT
N2. �B4�

From this we see that the longest relaxation time for Rouse
type relaxation of the trunk is

�1 =
1

3

b2

�2

�

kBT
N2. �B5�

The correlation function �Xp��t�Xq��0�� is of considerable
importance in determining the stress in the system. In order
to determine it we first obtain from Eq. �B3�

�Xp��t�Xq��0�� =
1

�p
2	

−


t

dt1	
−


0

dt2 exp�− �t − t1�
�p

�
� exp� t2

�q
��fp��t1�fq��t2�� . �B6�

Using the fluctuation-dissipation theorem given by Eq. �3�
and the normal coordinates transformation we obtain

��fp��t1�fq��t2��� = 2�pkBT	pq	��	�t1 − t2� . �B7�

Using Eq. �B7� in Eq. �B6�, we obtain

��Xp��t�Xq��0��� =
kBT

kp
	pq	�� exp�− t

�p
� . �B8�

APPENDIX C: REPTATION

The solution for Eq. �11� with the initial and boundary
conditions, Eqs. �12�–�14� is given by

��s,s�;t� = a�s − s�� + 2Dc
a

L
t + 4

La

�2 

p=1



1

p2�1 − exp�−
tp2

�d
��

� cos� p�s

L
�cos� p�s�

L
� , �C1�

where �d=1/ ��2��b4 /a2��� /kBT�N2�1+��.
In the lim s�→s we have ��s ; t�= ��R�s , t�−R�s ,0��2�, the

mean-square displacement of the bead on the sth position
along the chain given by

��R�s,t� − R�s,0��2� = 2Dc
a

L
t + 4

La

�2 

p=1



1

p2�1 − exp�−
tp2

�d
��

� cos2� p�s

L
� . �C2�

It can be seen from Eq. �C2� for t
�d we get diffusive
behavior with a diffusion constant given by

D =
1

3
Dc

a

L
=

1

3

kBT

N2�

a2

b2 . �C3�

APPENDIX D: MEAN-SQUARE DISPLACEMENT
OF THE MONOMER

The mean-square displacement of a segment in terms of
the normal coordinates is given by

��Rn�t� − Rn�0��2�

= ��X0�t� − X0�0��2� − 4��X0�t� − X0�0��

�

p=1




�Xp�t� − Xp�0��cos� p�n

N2� ��
+��2


p=1




�Xp�t� − Xp�0��cos� p�n

N2� ��2� .

�D1�

Substituting Eq. �7� in Eq. �D1� and using the fact that
correlations between different modes vanish, we obtain

��Rn�t� − Rn�0��2� = 6Dct + 4

p=1




��Xp�t�

− Xp�0��2�cos2� p�n

N2� � . �D2�

Since we are interested in calculating the time taken for a
segment to move a mean-square distance of order a2, we
expect this time to be much smaller than the longest relax-
ation time �1. For t��1 we have the second term of Eq. �D2�
as the dominating term. The second term of Eq. �D2� can be
expanded to obtain

4

p=1




�Xp�t� − Xp�0��2 cos2� p�n

N2� �
= 4


p=1




�Xp�t�2� + �Xp�0�2�

− 8

p=1




�Xp�t� · Xp�0��cos2� p�n

N2� � . �D3�

Using Eq. �B3� we have
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�Xp��t�Xq��t�� = 2
kBT

�p
	��	pq

� 	
−


t

dt1	
−


t

dt2 exp�− �t − t1�
�p

�
� exp�− �t − t2�

�q
��fp��t1�fq��t2�� .

�D4�

This gives ��Xp�t��2�=3kBT /kp for all t and �Xp�t� ·Xp�0��
=3kBT /kp exp�−t /�p�. Substituting in Eq. �D3� we obtain for
t��1,

��Rn�t� − Rn�0��2� = 4N2� b2

�2 

p=1



1

p2�1 − exp�− p2t

�1
��

� cos2� p�n

N2� � . �D5�

From Eq. �D5� we can obtain the time taken for an average
mean-square displacement of a2 by a segment as

�e =
a4

b2

�

12

N2�1−2���

kBT
. �D6�

APPENDIX E: FRICTION OF THE HIERARCHICAL
TRUNK

Consider, for example, a three tier hierarchical structure
of the lattice tree. Hierarchy level 1 consists of a primary
trunk of N1/2 segments having N1/2 primary loops attached to

it, each of which contains on an average N1/2 beads. Hierar-
chical level 2 describes the fractal structure of a primary
loop, that is, it consists of a secondary trunk of N1/4 segments
having N1/4 secondary loops attached to it, each of which
contains on an average N1/4 beads. At the hierarchical level
3, each of the secondary loops is described as being com-
posed of a tertiary trunk of N1/8 segments having N1/8 loops
attached to it, each of which contains N1/8 beads. We will
follow consistently the argument that at any hierarchical
level a trunk segment can undergo Brownian reorientational
motions only after the loop attached to it has relaxed via its
modified Rouse dynamics.

If the friction coefficient of an individual bead is �, then
the longest Rouse relaxation time of the third hierarchical
level loops �N1/4. This will then manifest itself as the fric-
tion coefficient of the segment of the trunk of the third hier-
archical level, i.e., ��3�=N1/4�. Thus the modified Rouse
chain at the third hierarchical level would consist of a chain
containing N1/8 beads each having a friction coefficient of
N1/4�. Proceeding similarly to the next higher hierarchical
level, the friction coefficient of a trunk segment of hierarchy
2 can be calculated from the longest relaxation time of the
modified Rouse chain of hierarchy 3. Thus, ��2�= �N1/8�2��3�

=N1/2�. The trunk of the second hierarchy level thus contains
N1/4 segments each having a friction coefficient given by
N1/2�. It is then straightforward to calculate the friction co-
efficient of a segment on the first hierarchical level as being
��1�= �N1/4�2��2�=N�. Generalizing the above argument, it can
be shown that for the ith level of hierarchy, i=1 being
the primary trunk of N1/2 segments, the friction coefficient
of a trunk segment at that hierarchical level is given by
��i�=N�1 / 2�i−1
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